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New alcohol-related genes suggest shared genetic 
mechanisms with neuropsychiatric disorders
Evangelos Evangelou   1,2,94, He Gao1,3,94, Congying Chu4,94, Georgios Ntritsos   2,94, Paul Blakeley1,5, 
Andrew R. Butts6, Raha Pazoki1, Hideaki Suzuki   7,8, Fotios Koskeridis   2, Andrianos M. Yiorkas9,10, 
Ibrahim Karaman   1,11, Joshua Elliott1, Qiang Luo   12,13, Stefanie Aeschbacher14, Traci M. Bartz15,16, 
Sebastian E. Baumeister17,18, Peter S. Braund19,20, Michael R. Brown21, Jennifer A. Brody   15, 
Toni-Kim Clarke22, Niki Dimou   2, Jessica D. Faul23, Georg Homuth24, Anne U. Jackson   25, 
Katherine A. Kentistou   26,27, Peter K. Joshi   26, Rozenn N. Lemaitre15, Penelope A. Lind   28, 
Leo-Pekka Lyytikäinen   29,30,31, Massimo Mangino   32,33, Yuri Milaneschi34, Christopher P. Nelson   19,20, 
Ilja M. Nolte   35, Mia-Maria Perälä   36,37, Ozren Polasek38, David Porteous   39,40, Scott M. Ratliff41, 
Jennifer A. Smith   23,41, Alena Stančáková42, Alexander Teumer   17,43, Samuli Tuominen44, 
Sébastien Thériault45,46, Jagadish Vangipurapu42, John B. Whitfield   47, Alexis Wood48, Jie Yao49, 
Bing Yu21, Wei Zhao   41, Dan E. Arking50, Juha Auvinen51,52, Chunyu Liu53, Minna Männikkö54, 
Lorenz Risch55,56,57, Jerome I. Rotter   58, Harold Snieder35, Juha Veijola59,60,61, Alexandra I. Blakemore9,10, 
Michael Boehnke   25, Harry Campbell26, David Conen45, Johan G. Eriksson62,63,64, Hans J. Grabe   65,66,  
Xiuqing Guo49, Pim van der Harst   67,68,69, Catharina A. Hartman70, Caroline Hayward   71,  
Andrew C. Heath72, Marjo-Riitta Jarvelin73,74,75,76,77, Mika Kähönen78,79, Sharon L. R. Kardia41,  
Michael Kühne14, Johanna Kuusisto80, Markku Laakso   80, Jari Lahti   44, Terho Lehtimäki29,30,  
Andrew M. McIntosh   22,40, Karen L. Mohlke   81, Alanna C. Morrison21, Nicholas G. Martin   47,  
Albertine J. Oldehinkel   70, Brenda W. J. H. Penninx34, Bruce M. Psaty82,83, Olli T. Raitakari84,85,86,  
Igor Rudan   26, Nilesh J. Samani19,20, Laura J. Scott   25, Tim D. Spector32, Niek Verweij   67,  
David R. Weir   23, James F. Wilson   26,71, Daniel Levy87,88, Ioanna Tzoulaki   1,3, Jimmy D. Bell   89,94,  
Paul M. Matthews   7,11,94, Adrian Rothenfluh   6,90,94, Sylvane Desrivières   4,94, Gunter Schumann   4,91,94*  
and Paul Elliott   1,3,11,92,93,94*

Excessive alcohol consumption is one of the main causes of death and disability worldwide. Alcohol consumption is a heritable 
complex trait. Here we conducted a meta-analysis of genome-wide association studies of alcohol consumption (g d−1) from the 
UK Biobank, the Alcohol Genome-Wide Consortium and the Cohorts for Heart and Aging Research in Genomic Epidemiology 
Plus consortia, collecting data from 480,842 people of European descent to decipher the genetic architecture of alcohol intake. 
We identified 46 new common loci and investigated their potential functional importance using magnetic resonance imaging 
data and gene expression studies. We identify genetic pathways associated with alcohol consumption and suggest genetic 
mechanisms that are shared with neuropsychiatric disorders such as schizophrenia.

A full list of affiliations appears at the end of the paper.

Excessive alcohol consumption is a major public health prob-
lem that is responsible for 2.2% and 6.8% of age-standard-
ized deaths of women and men, respectively1. Most genetic 

studies of alcohol consumption focus on alcohol dependency, 
although the population burden of alcohol-related disease mainly 
reflects a broader range of behaviours associated with alcohol 
consumption2. Small reductions in alcohol consumption could 

have major public health benefits; even moderate decreases in 
alcohol consumption per day may have a substantial effect on 
rates of mortality3.

Alcohol consumption is a heritable complex trait4, but genetic 
studies to date have robustly identified only a small number of 
associated genetic variants5–8. These include variants in the alde-
hyde dehydrogenase (ADH) gene family—a group of enzymes that 
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significantly associated variant—rs1991556 (P = 4.5 × 10−23)—is an 
intronic variant in MAPT, which encodes the microtubule-associ-
ated protein tau, that was found through PhenoScanner to be asso-
ciated with not only dementia15 and Parkinson’s disease16,17, but also 
with neuroticism, schizophrenia18 and other traits19–21 (see Methods; 
Fig. 2, Supplementary Table 6). The second most significantly asso-
ciated variant, rs1004787 (P = 6.7 × 10−17), is located near SIX3, 
which encodes a member of the sine oculis homeobox transcription 
factor family involved in the development of the eyes22. The third 
most significantly associated SNP, rs13107325 (P = 1.3 × 10−15), is a 
missense SNP in SLC39A8 (NCBI Gene 64116)—which encodes a 
member of the SLC39 family of metal-ion transporters—that has 
been associated with schizophrenia23 as well as inflammatory bowel 
disease, cardiovascular and metabolic phenotypes24–27 in previous 
GWAS (Fig. 2, Supplementary Table 6).

Another of our most-significant variants—an intronic SNP 
rs7121986 (P = 6.2 × 10−14) in DRD2 (NCBI Gene 1813)—is located 
in the gene that encodes the dopamine receptor D2 that has been 
associated with cocaine addiction, neuroticism and schizophre-
nia18. We also found significant associations with SNP rs988748 
(P = 4.4 × 10−9) in the BDNF gene (NCBI Gene 627), which 
encodes a member of the nerve growth factor family of proteins, 
and rs7517344, which is located near ELAVL4 (NCBI Gene 1996; 
P = 2.0 × 10−10), the product of which is involved in the regulation of 
BDNF28. Previous studies have suggested that a variant of BDNF is 
associated with alcohol consumption and that alcohol consumption 
modulates the expression of BDNF29.

We also found that alcohol consumption is associated with SNP 
rs838145 (P = 3.2 × 10−15), which has been associated with mac-
ronutrient intake in a previous GWAS30. This variant is nearest to 
IZUMO (NCBI Gene 284359) in a locus of around 50 kb that spans 
a number of genes including FGF21 (NCBI Gene 26291), the gene 
product of which, FGF21, is a liver hormone that is involved in the 
regulation of alcohol preference, glucose and lipid metabolism31. We 
previously reported a significant association of alcohol intake with 
SNP rs11940694 in KLB (NCBI Gene 152831)—an obligate receptor 
of FGF21 in the brain5—and we strongly replicated that finding here 
(P = 3.3 × 10−68).

As well as variants in KLB and in the alcohol dehydrogenase locus 
(smallest P = 1.2 × 10−125), we found support (P = 1 × 10−5) for the 
association of common variants in three other loci related to alco-
hol intake that were previously reported in GWAS (Supplementary 
Table 7), including SNP rs6943555 in AUTS2 (NCBI Gene 26053; 
P = 2.9 × 10−6). We also found that a new SNP related to alco-
hol intake, rs1421085 in FTO (NCBI Gene 79068), is in high LD 
(r2 = 0.92) with a variant that has been previously reported to have 
a genome-wide significant association with alcohol dependence32.

catalyse the oxidation of aldehydes9—including a cluster of genes on 
chromosome 4q23 (ADH1B, ADH1C, ADH5, ADH6 and ADH7)6.

Here we report a genome-wide association studies (GWAS) 
meta-analysis of alcohol intake (log-transformed alcohol intake 
(g d−1)) among individuals of European ancestry drawn from the 
UK Biobank (UKB)10, the Alcohol Genome-Wide Consortium 
(AlcGen) and the Cohorts for Heart and Aging Research in Genomic 
Epidemiology Plus (CHARGE+) consortia. In brief, UKB is a pro-
spective cohort study comprising approximately 500,000 individu-
als recruited between the ages of 40 yr and 69 yr. Participants were 
asked to report their average weekly and monthly alcohol consump-
tion through a self-completed touchscreen questionnaire10. On the 
basis of these reports, we calculated the alcohol intake (g d−1; see 
Methods). Participants were genotyped using a customized array 
with imputation from the Haplotype Reference Consortium (HRC) 
panel11, yielding approximately 7 million common single nucleo-
tide polymorphisms (SNPs) with a minor allele frequency (MAF) 
of ≥1% and imputation quality INFO score of ≥0.1. After quality 
control (QC) and exclusions (see Methods), we performed a GWAS 
of alcohol consumption using data from 404,731 participants of 
European descent from the UKB under an additive genetic model 
(see Methods; Supplementary Table 1). We found that genomic 
inflation in the UKB analysis was λGC = 1.45, but we did not adjust 
for inflation because the linkage disequilibrium score regression 
(LDSR) intercept was 1.05, indicating that the genomic inflation 
was due to polygenicity rather than to population stratification12. 
The estimated SNP-wide heritability of alcohol consumption in the 
data from the UKB was 0.09.

We also performed a GWAS on the basis of 25 independent stud-
ies from the AlcGen and CHARGE+ consortia, including 76,111 
participants of European descent for whom alcohol consumption 
(g d−1) could be calculated (Supplementary Table 2). Various arrays 
were used for genotyping, and imputation was performed using 
either the 1000 Genomes reference panel or the HRC platforms 
(Supplementary Table 3). After QC, we applied genomic control 
at the individual-study level and obtained summary results for 
approximately 7 million SNPs with an imputation quality score of 
≥0.3 (see Methods).

We combined the UKB, AlcGen and CHARGE+ results using 
a fixed-effects inverse-variance-weighted approach for a total of 
480,842 individuals13. To maximize power, we performed a sin-
gle-stage analysis to test common SNPs with a MAF of ≥1%. We 
set a stringent P-value threshold of P < 5 × 10−9 to denote signifi-
cance in the combined meta-analysis14 and required signals to be at 
P < 5 × 10−7 in UKB—with the same direction of effect in UKB and 
AlcGen plus CHARGE+—to minimize false-positive findings. We 
excluded SNPs within 500 kb of variants reported as genome-wide 
significant in previous GWAS of alcohol consumption5,6, identified 
new loci by requiring SNPs to be independent of each other (linkage 
disequilibrium (LD; r2 < 0.1) and selected the sentinel SNP within 
each locus according to lowest P value (see Methods).

We then tested for correlations of alcohol-associated SNPs with 
imaging phenotypes of brain, heart and liver (as measured by MRI), 
and gene expression. We tested the sentinel SNPs for association 
with other traits and diseases and used Drosophila mutant models 
to investigate functional effects of mutations on behaviours induced 
by ethanol.

Results
Our meta-analysis identified 46 new loci associated with alcohol 
consumption (log-transformed alcohol intake (g d−1); Fig. 1, Table 1).  
All inferential statistics for the new loci are reported in Table 1, whereas 
heterogeneity metrics are presented in Supplementary Table 4.  
We also discovered a further eight variants in the combined analy-
sis at nominal genome-wide significance (P < 1 × 10−8) that may be 
associated with alcohol intake (Supplementary Table 5). The most 
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Fig. 1 | Results of the discovery genome-wide association meta-
analysis with alcohol consumption. Manhattan plot showing P values 
from discovery genome-wide association meta-analysis with alcohol 
consumption (log-transformed alcohol intake, in g d–1) among 480,842 
individuals across UKB, AlcGen and CHARGE+, excluding known variants. 
The P value was computed using inverse-variance fixed-effects models. The 
y axis shows the –log10 P values, and the x axis shows their chromosomal 
positions. The horizontal blue line represents the threshold of P = 5 × 10−9.
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Conditional analysis using Genome-wide Complex Trait Analysis 
(GCTA) software did not reveal any independent secondary signals 
related to alcohol consumption. Among approximately 14,000 indi-
viduals in the independent Airwave cohort33 (see Methods), 7% 
of the variance in alcohol consumption was explained by the new 
and known common variants. Using weights from our analysis, we 
constructed an unbiased weighted genetic risk score (GRS) in the 
Airwave cohort (see Methods) and found a strong association of 
the new and known variants with levels of alcohol consumption 
(P = 2.75 × 10−14), with a mean difference in sex-adjusted alcohol 
intake of 2.6 g d−1 when comparing the top and the bottom quintile 
of the GRS (Supplementary Table 8).

Associations with MRI phenotypes. We functionally charac-
terized new variants by carrying out single-SNP analyses of the 
imaging phenotypes in the UKB (see Methods), focusing on brain 
(n = 9,702), heart (n = 10,706) and liver (n = 8,479).

Using Bonferroni correction (corrected P = 6.6 × 10−6, corre-
sponding to 0.05/46 SNPs × 164 imaging phenotypes), we found 
significant positive associations between SNP rs13107325 in 
SLC39A8 and the volumes of multiple brain regions; all inferen-
tial statistics for these associations are reported in Supplementary 
Table 9. The strongest associations were found for the putamen 
(left: P = 2.5 × 10−45; right: P = 2.8 × 10−47), the ventral striatum (left: 
P = 9.5 × 10−53; right: P = 9.6 × 10−51) and the cerebellum (strongest 
association for left I–IV volume, P = 1.2 × 10−9; Supplementary 
Table 9). Similar findings were recently reported in a GWAS using 
brain imaging in UKB34. We also showed a significant association 
between rs1991556 and the parahippocampal gyrus (P = 1.2 × 10−6).

We then tested these brain regions for association with alcohol 
consumption and found a significant effect for the left (t8,601 = −3.7, 
effect size (β) ± s.e. = −0.0019 ± 0.0005, P = 2.0 × 10−4) and right 
(t8,601 = −3.65, β ± s.e. = −0.0070 ± 0.0005, P = 2.6 × 10−4) puta-
men. Finally, we used data from n = 8,610 individuals and per-
formed a mediation analysis using a standard three-variable path 
model, bootstrapping 10,000 times, to calculate the significance 
of the mediation effect of putamen volume for genetic influ-
ences on alcohol consumption (see Methods). We found evi-
dence that the effect of SNP rs13107325 in SLC39A8 on alcohol 
intake is partially mediated by its association with the volume of 
the left (t8,601 = −3.03, β ± s.e. = −0.27 ± 0.09, P = 1.9 × 10−3) and 
right (t8,601 = −2.82, β ± s.e. = −0.27 ± 0.09, P = 1.7 × 10−3) putamen  
(Fig. 3, Supplementary Table 10). To exclude the possibility of an 
inverse causal pathway, we performed additional analyses in UKB 
non-drinkers (n = 589). With 10,000 random permutations, associ-
ations of rs13107325 with both left and right putamen remained sig-
nificant (left putamen: t541 = 1.06, P = 0.02; right putamen: t541 = 0.38, 
P = 0.04), indicating that the association between rs13107325 and 
putamen regions is not mediated by alcohol intake.

We did not find any significant associations between the new 
SNPs and either cardiac (left ventricular mass or end diastolic volume 
or right ventricular end diastolic volume; Supplementary Table 11)  
or liver fat measurements from MRI analysis (Supplementary  
Table 12) after adjustment for multiple testing.

Effects of SNPs on gene expression. We carried out expression 
quantitative trait loci (eQTL) analyses using the Genotype-Tissue 
Expression (GTEx) and the UK Brain Expression Consortium 
(UKBEC) datasets. We found that 34 of the 53 new and known 
SNPs associated with alcohol consumption have a significant effect 
on gene expression in at least one tissue type, including 33 SNPs that 
affect gene expression in the brain (Supplementary Tables 13 and 14, 
Supplementary Figs. 1–3). We found that the most significant eQTLs 
often do not involve the nearest gene and that several of the SNPs 
affect expression of different genes in different tissues. For example, 
SNP rs1991556 in MAPT (NCBI Gene 4137) affects expression of 33 Le
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genes overall—with the most significant effects on the expression of 
the non-protein-coding genes CRHR1-IT1 (also known as C17orf69 
or LINC02210; NCBI Gene 147081) and LRRC37A4P (NCBI Gene 
LRRC37A4P)—that are located near MAPT and expressed in a 
wide range of tissues including the brain, adipose tissue and skin 
(P = 7.2 × 10−126 to P = 2.5 × 10−6; Supplementary Fig. 2). Similarly, 
the A allele at SNP rs2071305 within MYBPC3 (NCBI Gene 4607) 
affects the expression of several genes and is most significantly asso-
ciated with increased expression of C1QTNF4 (NCBI Gene 114900) 
across several tissues (P = 1.9 × 10−25 to P = 8.4 × 10−5).

Several of these eQTLs were found to affect expression of genes 
known to be involved in reward and addiction. SNP rs1053651 in the 
TCAP–PNMT–STARD3 gene cluster affects expression of PPP1R1B 
(also known as DARPP-32; NCBI Gene 84152), which encodes 
a protein that mediates the effects of dopamine in the mesolimbic 
reward pathway35. Other known addiction-related genes include 
ANKK1 (NCBI Gene 255239) and DRD2 (expression affected by SNP 
rs7121986), genes implicated in alcohol and nicotine dependence36,37, 
CRHR1 (NCBI Gene 1394; affected by SNP rs1991556), which is 
involved in stress-mediated alcohol dependence38,39, and PPM1G 
(SNP rs1260326; NCBI Gene 5496), epigenetic modification of which 
was previously reported to be associated with alcohol abuse40.

Over-representation enrichment analyses on the basis of func-
tional annotations and disease-related terms indicated that genes 
of which the expression is affected by the identified eQTLs are 
most significantly enriched for terms related to abdominal (n = 91) 
and other malignant cancers, motor function (n = 5) and cellular 
homeostasis (n = 22; Supplementary Fig. 4). We performed a gene-
based analysis and repeated the over-representation enrichment 
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Fig. 2 | Association of alcohol intake loci with other traits. Associations with other traits were identified using the PhenoScanner database for the 46 
new sentinel SNPs, including proxies in LD (r2 ≥ 0.8) with genome-wide significant associations. Each coloured line connects a specific variant with the 
associated traits and diseases. eGFR, estimated glomerural filtration rate.

analysis, adding the new set of identified genes (Supplementary 
Table 15). The results were similar, supporting an enrichment for 
abdominal (n = 100) and other cancers, as well as motor function 
(n = 5) and cellular homeostasis (n = 24; Supplementary Fig. 5).

Other traits and diseases. Using LDSR12, we assessed genetic cor-
relations between alcohol consumption and 235 complex traits and 

Bilateral putamen
ab = –3.10 (0.0019)

ab = –3.13 (0.0017)

rs13107325 Alcohol intakec = –1.77 (0.0771); c ′ = –1.23 (0.2189)

a = 3.73 (1.85 × 10
–4 ) b = –3.16 (0.0016)

b = –3.13 (0.0017)

c = –1.74 (0.0819); c ′ = –1.20 (0.2309)

a = 3.73 (1.94 × 10
–4 )

Fig. 3 | Mediation effect of the grey-matter volume of bilateral putamen 
on the relationship between SNP rs13107325 and alcohol intake. The 
left putamen is indicated in green and the right putamen is indicated in 
red. We use a for the relationship between rs13107325 and putamen, b 
for the relationship between putamen and alcohol consumption, c for 
the relationship between rs13107325 and alcohol consumption, c′ for the 
relationship between rs13107325 and alcohol consumption after excluding 
the effect of putamen, and ab as the mediation effect. The significance 
tests are based on the bootstrapping method (10,000 times). z-statistics 
and the corresponding P values are provided in parentheses. The brain icon 
was created using Mango software v4.1 (http://ric.uthscsa.edu/mango/).
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diseases from publicly available GWAS summary statistics (see 
Methods). All results—including their statistics (that is, rg, s.e., z 
value and P value)—are included in Supplementary Table 16. The 
strongest positive genetic correlations on the basis of false-discov-
ery rate (FDR)-adjusted values of P < 0.02 were found for smok-
ing (rg = 0.42, P = 1.0 × 10−23) and levels of high-density lipoprotein 
(HDL) cholesterol (rg = 0.26, P = 5.1 × 10−13). We also found negative 
correlations for sleep duration (rg = −0.14, P = 3.8 × 10−7) and fasting 
insulin levels (rg = −0.25, P = 4.5 × 10−6). A significant genetic corre-
lation was also found with schizophrenia (rg = 0.07, P = 3.9 × 10−3) 
and bipolar disorder (rg = 0.15, P = 5.0 × 10−4; Supplementary Table 
16). Over-representation enrichment analysis using WebGestalt41 
(http://www.webgestalt.org) showed that our list of new and known 
variants is significantly enriched for several diseases and traits, 
including developmental disorder in children (P = 7.3 × 10−5), 
epilepsy (P = 1.4 × 10−4), heroin dependence (P = 5.7 × 10−4) and 
schizophrenia (P = 8.4 × 10−4; Supplementary Fig. 6). Mendelian 
randomization analysis (see Methods) was performed to assess a 
potential causal effect of alcohol on schizophrenia risk using the 
inverse-variance weighted approach, but this analysis did not show 
significant results (P = 0.089), showing large heterogeneity of the 
estimates of the tested variants.

Functional studies in Drosophila. On the basis of our GWAS and 
brain imaging findings, we performed further testing on the SNP 
rs13107325 in SLC39A8 (also known as ZIP8) in Drosophila, mak-
ing use of conserved mechanisms to modulate behaviours that are 
induced by ethanol42,43. First, we overexpressed human ZIP8 using 
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Fig. 4 | Comparison of ZIP8 alcohol phenotypes in Drosophila. a–c, Flies were exposed to 100/50 (flowrates) ethanol/air vapour for 30 min for exposure 
1, and the time to 50% loss-of-righting was determined (ST-50, sedation time). After recovery on food for 4 h, flies were re-exposed to the same vapours, 
and the second ST-50 was recorded (left). The resulting increase in ST-50—that is, tolerance—is shown on the right. Drosophila overexpressing human 
hZIP8 in ics-expressing cells (a), Drosophila with knockdown of the fly orthologue dZip71B (b) and Drosophila carrying two transposon insertions in the 
endogenous dZip71B gene (c) were compared with control flies. ***P < 0.001, **P < 0.01, *P < 0.05; exact P values are presented in the text.

a Gal4 driver that included expression in neurons involved in  
multiple ethanol-induced behaviours43. Flies carrying icsGal4/+ UAS-
hZIP8/+ showed a slight—albeit significant—resistance to sedation 
induced by ethanol compared with control flies (t30 = 2.3, Hedge’s 
g = 0.80, 95% confidence interval (CI) = 0.08–1.53, P = 0.026, n = 16 
per genotype). Ethanol tolerance, induced by repeated exposures 
that were separated by recovery for 4 h, was unchanged in these 
flies (t = 1.0, P = 0.33; Fig. 4a). Next, we used the same Gal4 driver 
to knock down the endogenous Drosophila orthologue of hZIP8, 
dZip71B. This caused the flies to display naive sensitivity to sedation 
induced by ethanol (t14 = 3.98, Hedge’s g = −1.84, 95% CI = −0.67 
to −3.01, P = 0.0014; n = 8 per genotype) and, furthermore, these 
flies developed greater tolerance to ethanol after repeated expo-
sure (t14 = 4.80; Hedge’s g = 2.29, 95% CI = 1.03–3.55, P = 0.0003; 
Fig. 4b). To corroborate this phenotype, we then tested flies that 
were transheterozygous for two independent transposon inser-
tions in the middle of the dZip71B gene (Supplementary Fig. 7) and 
found that these dZip71BMi/MB flies also displayed naive sensitivity 
to sedation induced by ethanol (t14 = 3.23, Hedge’s g = −1.54, 95% 
CI = −0.42 to −2.65, P = 0.006) and increased ethanol-induced tol-
erance (t14 = 2.39, Hedge’s g = 1.13, 95% CI = 0.07–2.18, P = 0.032) 
compared with the controls (n = 8 each; Fig. 4c).

Discussion
Our discovery utilizing data on common variants from more than 
480,000 people of European descent extends our knowledge of the 
genetic architecture of alcohol intake, increasing the number of 
identified loci to 46. We identified loci involved in neuropsychiatric 
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conditions such as schizophrenia, Parkinson’s disease and demen-
tia, as well as BDNF, gene expression of which is affected by alco-
hol abuse. Our findings illustrate that large-scale studies of genetic 
associations with alcohol intake in the general population—rather 
than studies on alcohol dependency alone—can provide further 
insights into the genetic mechanisms that regulate the consump-
tion of alcohol.

We highlight the role of the highly pleiotropic MAPT and 
SLC39A8 genes in the genetics of alcohol consumption. MAPT 
plays an important role in tau-associated dementia44 and both 
MAPT and SLC39A8 are implicated in other neuropsychiatric 
conditions, including neuroticism, schizophrenia and Parkinson’s 
disease16–18. SLC39A8 encodes a member of the SLC39 family of 
metal-ion transporters. SLC39A8 is glycosylated and found in the 
plasma membrane and mitochondria, and is involved in the cellular 
transport of zinc, the modulation of which could affect microglial 
inflammatory responses45. Our gain-of-function and loss-of-func-
tion studies in Drosophila indicate a potential causal role of SLC39A8 
in alcohol-consumption behaviour, although these results should 
be interpreted with caution owing to the small sample size in our 
experiment. Using MRI brain imaging, we demonstrate a significant 
association between SNP rs13107325 in SLC39A8 and differences 
in the volume of the putamen, and that these structural differ-
ences seem to partially mediate associations between rs13107325 
and alcohol consumption. The putamen has been associated with 
alcohol consumption and the withdrawal syndrome after chronic 
administration to rodents and non-human primates46. On the basis 
of the mediation analysis, we suggest a plausible causal pathway that 
links rs13107325 in SLC39A8 with alcohol intake through an effect 
on putamen volume, but further studies are needed to conclusively 
demonstrate causal links. Differences in the volume of the putamen 
have also been associated with both schizophrenia and psychosis47,48 
and a robust association between SNP rs13107325 in SLC39A8 and 
schizophrenia was reported in a previous GWAS23.

We also report SNP rs7121986—which is located near DRD2—as 
a new variant associated with alcohol intake in GWAS. The gene 
product of DRD2, D2 dopamine receptor, is a G-protein-coupled 
receptor expressed on post-synaptic dopaminergic neurons that has 
long been implicated in alcoholism49. We also identify SNP rs988748 
in BDNF as a new alcohol intake variant; BDNF expression is dif-
ferentially affected by alcohol exposure in animal models50,51. DRD2 
and BDNF (along with PPP1R1P) are centrally involved in reward-
mediating mesocorticolimbic pathways and are both implicated in 
the development of schizophrenia. For example, there is a robust 
GWAS association between schizophrenia and SNP rs4938021 in 
DRD2 (in perfect LD with our new alcohol intake-related variant 
rs7121986) and DRD2 seems to be pivotal in network analyses of 
genes involved in schizophrenia52. Taken together, our results sug-
gest that there are shared genetic mechanisms between the regula-
tion of alcohol intake and susceptibility to schizophrenia, as well as 
other neuropsychiatric disorders. Related to this, large prospective 
epidemiological studies report a threefold risk of schizophrenia in 
relation to alcohol abuse53.

We previously reported genome-wide significant associations 
between alcohol intake and KLB, and identified a liver–brain axis 
that linked the liver hormone FGF21 with central regulation of alco-
hol intake, which involved the β-klotho receptor (the gene product 
of KLB) in the brain5. Here we identified a significant variant near 
FGF21 and strongly replicate the previously reported KLB gene 
variant, strengthening the genetic evidence for the importance of 
this pathway in the regulation of alcohol consumption.

The LDSR analysis showed a positive genetic correlation between 
alcohol consumption, smoking and levels of HDL cholesterol. 
This confirms previous studies that reported an almost-identical 
genetic correlation between alcohol consumption and the number 
of cigarettes smoked per day54. Furthermore, the observed genetic  

correlation with HDL levels is consistent with previous observa-
tions of an association between alcohol consumption and HDL55,56, 
including results of a Mendelian randomization study that suggested 
a possible causal role linking alcohol intake with increased HDL lev-
els57. Moreover, we found an inverse genetic correlation between the 
duration of sleep and consumption of alcohol—an association that 
has been previously reported only in a few small epidemiological 
studies58. We also found a significant genetic correlation between 
schizophrenia and bipolar disorder, a result that is supported by a 
recently published trans-ethnic meta-analysis of case–control stud-
ies on alcohol dependence59. We could not test for a genetic asso-
ciation between alcohol and risk of alcohol-related cancers60 owing 
to the limited availability of summary data. However, our gene-set 
enrichment analysis showed a significant enrichment for genes 
related to abdominal as well as other cancers.

The strengths of our study include its size, detailed attention 
to the alcohol phenotype, dense coverage of the genome through 
imputation, and incorporation of brain and other imaging data to 
explore potential mechanisms. More than 80% of the data came 
from UKB, which combines high-quality phenotypic data and 
imputed genome-wide genetic data with strict attention to QC61. 
We adopted a stringent approach to claim new variants, including 
a conservative P-value threshold, internal replication in UKB and 
consistent direction of effect with the other studies to minimize the 
reporting of false-positive signals.

However, because alcohol intake is socioculturally and genetically 
determined, it is influenced by other lifestyle and environmental 
factors that may modify or dilute the genetic signal. A key limita-
tion is that assessment of alcohol intake relies on self-reporting,  
which is prone to errors and biases, including recall bias and  
systematic under-reporting by heavy drinkers62,63. Furthermore, 
questionnaires on alcohol intake covered a short duration (for 
example, a day or week) for a single period, which may not be rep-
resentative of broader drinking patterns of cohort participants. We 
harmonized data across cohorts by converting alcohol intake into a 
common metric of g d−1, with imputation where necessary in UKB 
for participants that reported consumption of small amounts of 
alcohol. Taking this approach, we were able to detect strong genetic 
associations with alcohol intake that explained 7% of the variance 
in alcohol consumption in an independent cohort, whereas our 
GRS analysis indicates that individuals in the lower fifth of the GRS 
distribution were consuming approximately one third of a standard  
drink (2.6 g d−1 alcohol) less each day compared with those in  
the upper fifth.

We should also point out that our eQTL analyses are a first step 
in the identification of causal genes. Yet, as the most significant 
eQTLs affect expression of many genes—which are not necessar-
ily the nearest genes—there is a need to further prioritize potential 
causal genes. Unbiased strategies that leverage information from 
multiple datasets, including extensive genomic annotations and 
high-throughput functional screening in a broad range of tissues, 
will be essential to effectively prioritize genes and uncover underly-
ing causal mechanisms64. Establishing confidence in the prioritized 
genes in such a way is a prerequisite for performing functional fol-
low-up studies in appropriate model systems, as demonstrated by 
the identification of the causal genes and potential disease mecha-
nisms at the obesity-associated FTO locus65.

In summary, in this large study of genetic associations with alco-
hol consumption, we identified common variants in 46 new loci. 
Several of these variants are located in genes that are expressed in 
the brain as well as other tissues. Our findings suggest that there 
may be shared genetic mechanisms that underpin the regulation 
of alcohol intake and development of neuropsychiatric disorders, 
including schizophrenia. This may form the basis for a greater 
understanding of observed associations between alcohol consump-
tion, schizophrenia66 and other disorders.
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Methods
UKB data. We conducted a GWAS analysis using data from 458,577 UKB 
participants of European descent who were identified on the basis of a combination 
of self-reported and genetic data. The details of the selection of participants have 
been described elsewhere14. These participants comprised 408,951 individuals from 
the UKB, genotyped at 825,927 variants using a custom Affymetrix UKB Axiom 
Array chip, and a further 49,626 individuals from the UK BiLEVE study—which 
is a subset of UKB—genotyped at 807,411 variants using a custom Affymetrix UK 
BiLEVE Axiom Array chip. For our analyses, we used SNPs imputed centrally by 
UKB using the HRC panel.

Alcohol intake. We calculated alcohol intake as g d−1 on the basis of self-reported 
levels of alcohol consumption that were provided through a touch-screen 
questionnaire. The quantity of each type of drink (red wine, white wine, beer or 
cider, fortified wine or spirits) was multiplied by its standard drink size and reference 
alcohol content. Drink-specific intake during the reported drinking period (per 
week for frequent drinkers, defined as: daily or almost daily, once or twice a week, 
three or four times a week, or per month for occasional drinkers, defined as: one 
to three times a month or special occasions only) was summed and converted to 
g d−1 alcohol intake for all participants who provided a complete response to the 
quantitative drinking questions. The alcohol intake for participants who submitted 
incomplete responses was imputed by bootstrap resampling from the complete 
responses, stratified by drinking frequency (occasional or frequent) and sex.

Participants were defined as life-time non-drinkers if they reported ‘never’ 
on the question on alcohol drinking frequency (UKB field 1558) and ‘no’ for the 
question on former drinker (UKB field 3731); these participants were excluded 
from further analysis. We considered participants with alcohol consumption of 
more than 500 g d−1 to be outliers and they were excluded from further analysis. 
We also excluded participants with missing covariates, leaving data on 404,732 
individuals. The log10-transformed alcohol and sex-specific residuals were derived 
from the regression of log10-transformed alcohol intake on age, age2, genotyping 
chip and weight.

UKB genetic analysis. We performed linear mixed modelling with BOLT-LMM 
software67 using an additive genetic model to determine associations between 
measured and imputed SNPs and alcohol consumption (sex-specific residuals of 
the log10-transformed alcohol intake variable). Model building was based on SNPs 
with MAF > 5%, call rate > 98.5% and Hardy–Weinberg equilibrium P > 1 × 10−6. 
SNPs were imputed using the HRC panel with an imputation quality INFO score 
of  ≥0.1. We estimated the LDSR intercept to assess the degree of genomic inflation 
beyond polygenicity as well as the genomic inflation factor68 λGC.

AlcGen and CHARGE+ consortia. We analysed GWAS data that were available 
from 25 independent studies (n = 76,111) conducted by the AlcGen and the 
CHARGE+ consortia. All study participants were of reported European ancestry 
and data were imputed to either the 1000 Genomes Project or the HRC panel. 
Alcohol intake in g d−1 was computed and the log10-transformed residuals were 
analysed as described above. Study names, cohort information and general study 
methods are included in Supplementary Tables 2 and 3.

All studies were subject to central QC using easyQC69, including filtering 
for MAFs. Finally, we analysed data on approximately 7.1 million SNPs with 
MAF > 1% and imputation quality score (Impute (INFO score) or Mach (r2))  ≥ 0.3. 
Genomic control (GC) was applied at the study level. We generated the available 
GWAS using a fixed-effects inverse-variance weighted meta-analysis and summary 
estimates were derived for AlcGen and CHARGE+.

One-stage meta-analysis. We performed a one-stage meta-analysis, in which we 
applied a fixed-effects inverse-variance weighted meta-analysis using METAL70 
to obtain summary results from the UKB and AlcGen plus CHARGE+ GWAS 
for up to 480,842 participants and around 7.1 million SNPs with MAF ≥ 1% for 
variants present in both the UKB data and AlcGen and CHARGE+ meta-analysis. 
We assessed the observed heterogeneity using Cochran’s Q and we quantified this 
using the I2 metric. We considered a Cochran’s Q P < 1 × 10−4 to be significant. 
The LDSR intercept (s.e.) in the discovery meta-analysis was 1.05 and no further 
correction was applied. Quantile–quantile plots of the combined meta-analysis 
summary results, UKB only, and AlcGen and CHARGE+ only are presented in 
Supplementary Fig. 8.

Previously reported SNPs. We searched the GWAS Catalog (https://www.
ebi.ac.uk/gwas/) and identified 17 SNPs associated with alcohol consumption 
at genome-wide level of significance (P < 5 × 10−8). We enhanced the list with 
reference to a recent GWAS by Clarke et al.6 that was not covered by the GWAS 
Catalog at the time of the analysis, reporting 14 additional rare and common 
SNPs. Together with a SNP in RASGRF2, which has been shown to be associated 
with alcohol-induced reinforcement71, we found 31 previously reported alcohol-
consumption-related SNPs.

New loci. Using the locus definition of SNPs that are within a distance of ±500 kb 
of each other and SNPs that were in LD (r2 > 0.1) as calculated using PLINK, we 

augmented the list of known SNPs with all SNPs present within our data that were 
not contained within the previously published loci. We further excluded SNPs 
in the human leukocyte antigen region (chromosome 6, 25–34 Mb) owing to its 
complex LD structure. Using PLINK, we then performed LD clumping on 4,515 
unknown SNPs with P < 1 × 10−8 using an r2 > 0.1 and a distance threshold of 
500 kb. We further grouped the lead SNPs within 500 kb of each other into the same 
loci and selected the SNP with smallest P value from the locus as sentinel SNP.

We report a SNP as a new signal of association with alcohol consumption if the 
following criteria are fulfilled:

 1. The sentinel SNP has P < 5 × 10−9 in the one-stage meta-analysis.
 2. The sentinel SNP is strongly associated (P < 5 × 10−7) in the UKB GWAS 

alone.
 3. The sentinel SNP has a concordant direction of effect between UKB and 

AlcGen and CHARGE+ datasets.
 4. The sentinel SNP is not located within any of the previously reported loci.

We selected criteria (1)–(3) to minimize false-positive findings, including use 
of a conservative one-stage P-value threshold that was an order of magnitude more 
stringent than a genome-wide significance P value (for example, the threshold of 
P < 5 × 10−9 has been proposed for whole-genome sequencing-based studies). This 
approach allowed us to identify 46 sentinel SNPs in total. Regional plots for all 46 
sentinel SNPs are presented in Supplementary Fig. 9.

Conditional analysis. We conducted locus-specific conditional analysis using 
the GCTA software (https://cnsgenomics.com/software/gcta). For each of the 46 
new sentinel SNPs, we obtained conditional analysis results for the SNPs with a 
MAF of >1% and located within 500 kb of the sentinel SNP after conditioning 
on the sentinel SNP. The meta-analysis results of the GWAS in the UKB, AlcGen 
and CHARGE+ were used as input summary statistics and the individual-level 
genetic data from the UKB were used as the reference sample. Results for a SNP 
were considered to be conditionally significant if the difference between the 
conditional P value and the original P value was greater than 1.5-fold (−log10[P]/−
log10[Pconditional] > 1.5) and the conditional P value was smaller than 5 × 10−8.

Gene-based analysis. We performed a gene-based analysis using fastBAT, a 
method that performs a set-based association analysis using summary-level data 
from GWAS. We used the UKB dataset as a reference set for the LD calculations72. 
Gene-based associations with P < 5 × 10−9 were considered to be significant.

Gene expression analyses. To analyse the impact of genetic variants on the 
expression of neighbouring genes and identify eQTLs (cis-eQTLs; that is, SNPs 
associated with differences in local gene expression), we used two publicly available 
databases—the GTEx database73 (https://www.gtexportal.org) and the UKBEC 
dataset74 (http://www.braineac.org). We searched these databases for significant 
variant–transcript pairs for genes within 1 Mb of each input SNP.

Using the GTEx database, we tested for cis-eQTL effects in 48 tissues from 620 
donors. The data described herein were obtained from the GTEx Portal v.7, and we 
used FastQTL75 to map SNPs to gene-level expression data and calculate q values 
on the basis of β-distribution-adjusted empirical P values76. A FDR threshold of 
P ≤ 0.05 was applied to identify genes with a significant eQTL. The effect size—
defined as the slope of the linear regression—was computed in a normalized 
space (normalized effect size (NES)) in which magnitude has no direct biological 
interpretation. Here, NES reflects the effects of our GWAS effect alleles (that are 
not necessarily the alternative alleles relative to the reference alleles, as reported in 
the GTEx database). Supplementary Table 13 lists transcript–SNP associations with 
significant eQTL effects.

Using the UKBEC dataset that comprises 134 brains (http://www.braineac.
org/), we searched for cis-eQTLs in 10 brain regions, including the cerebellar 
cortex (CRBL), frontal cortex (FCTX), hippocampus (HIPP), medulla (specifically 
inferior olivary nucleus; MEDU), occipital cortex (specifically primary visual 
cortex; OCTX), putamen (PUTM), substantia nigra (SNIG), thalamus (THAL), 
temporal cortex (TCTX) and intralobular white matter (WHMT), as well as across 
all brain tissues (aveALL). We used MatrixEQTL77 to generate P values for each 
expression profile (at either the exon level or gene level) against the respective SNP 
for the 10 different brain regions and all brain tissues. Supplementary Table 14 lists 
transcript–SNP associations with a eQTL P < 0.0045 in at least one brain tissue. 
Subsequent data analysis was performed in R v3.5 (https://www.R-project.org/).

We performed over-representation enrichment analysis using a list of 146 
GTEx eQTL genes that were derived from the single-variant analysis and a list 
of 160 eQTL genes that were derived from both single-variant and gene-based 
analysis. Ingenuity pathway analysis (QIAGEN) was performed on these lists using 
ontology annotations from all available databases, except those derived from low-
confidence computational predictions.

MRI data. We used the most recent release of MRI data on brain, heart and liver 
from participants of the UKB to investigate genetic associations between the 46 
new SNPs and alcohol consumption.

Brain imaging. Brain MRI acquisition and preprocessing. We used the T1 data 
from the UKB to elucidate volumetric brain structures, including the cortical 
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and the sub-cortical areas. The T1 data were acquired and preprocessed centrally 
by the UKB. The brain regions were defined by combining the Harvard–Oxford 
cortical and subcortical atlases78 (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Atlases) 
and the Diedrichsen cerebellar atlas79 (http://www.diedrichsenlab.org/imaging/
propatlas.htm). FAST (FMRIB’s Automated Segmentation Tool)80 was then used 
to estimate the grey-matter partial volume within each brain region. Subcortical 
region volumes were also modelled using FIRST (FMRIB’s Integrated Registration 
and Segmentation Tool). More details about the MRI scanning protocol and 
preprocessing are provided in the UKB documentation (https://biobank.ctsu.ox.ac.
uk/crystal/crystal/docs/brain_mri.pdf).

Association analyses. We performed association analyses on n = 9,702 individuals 
between all new SNPs and the grey-matter volume of brain regions using Pearson 
correlation, adjusting for age, age2, sex, age × sex, age2 × sex and head size. Brain-
volume features, log-transformed alcohol intake data (g d−1) and the confounding 
factors were initially transformed using a rank-based inverse Gaussian 
transformation. Significance levels were set at P < 0.05 and adjusted using the FDR 
method for multiple comparisons.

Mediation analysis. To assess whether the effect of a SNP on alcohol consumption 
is mediated through a brain region, we performed a single-level mediation analysis 
on the basis of a standard three-variable path model (SNP–brain region–alcohol 
consumption) with corrected and accelerated percentile bootstrapping 10,000 
times to calculate the significance of the mediation effect. We considered the 
grey-matter volume of brain regions that had a significant association on alcohol 
consumption to be a mediator variable. We calculated the significance of path 
a, path b and ab mediation (SNP–brain region–alcohol consumption) using a 
multilevel mediation and moderation (M3) toolbox81,82. To exclude the possibility 
of an inverse causal pathway, we performed further analyses in non-drinkers from 
the UKB (n = 589)—performing 10,000 random permutations for associations 
between rs13107325 and both left and right putamen.

Cardiac imaging. Cardiac MRI acquisition and preprocessing. Details of the 
cardiac image acquisition in the UKB were reported previously83. Cardiac MRI 
was acquired using a clinical wide bore 1.5 T scanner (MAGNETOM Aera, Syngo 
Platform VD13A, Siemens Healthcare) with 48 receiver channels, a 45 mT m−1 
and 200 T m−1 s−1 gradient system, an 18-channel anterior body surface coil 
used in combination with 12 elements of an integrated 32 element spine coil 
and electrocardiogram gating for cardiac synchronization. A two-dimensional 
short-axis cardiac MRI was obtained using a balanced steady-state free precession 
to cover the entire left and right ventricle (echo time, 1.10 ms; repetition time, 
2.6 ms; flip angle, 80°; slice thickness, 8 mm with 2 mm gap; typical field of view, 
380 × 252 mm2; matrix size, 208 × 187, acquisition of 1 slice per breath-hold).

The cardiac images were segmented to provide left ventricular mass (LVM), 
left end-diastolic volume (LVEDV), left end-systolic volume (LVESV), right 
end-diastolic volume (RVEDV) and right end-systolic volume (RVESV) using a 
fully convolutional network as described previously84. Left ventricular ejection 
fraction (LVEF) and right ventricular ejection fraction (RVEF) were derived 
from (LVEDV–LVESV)/LVEDV × 100 and (RVEDV–RVESV)/RVEDV × 100, 
respectively.

Association analyses. To test associations between cardiac MRI parameters and 
alcohol-consumption-related SNPs, we carried out a regression of LVM, LVEDV, 
LVEF, RVEDV and RVEF onto each of the 46 SNPs adjusting for age, sex, height, 
weight, hypertension (defined as systolic blood pressure > 140 mmHg and/or 
diastolic blood pressure > 90 mmHg or under antihypertensive treatment), diabetes 
and smoking history on n = 10,706 participants. Significance levels were set at 
P < 0.05 and adjusted using the FDR method for multiple comparisons.

Liver imaging. Liver MRI acquisition and preprocessing. Details of the liver image 
acquisition protocol have been reported previously85. In brief, all participants 
were scanned in a Siemens MAGNETOM Aera 1.5 T MRI scanner (Siemens 
Healthineers) using a 6-min dual-echo Dixon Vibe protocol, providing a water-
and-fat-separated volumetric dataset for fat and muscle covering neck to knees. 
For the quantification of the liver proton density fat fraction (PDFF), an additional 
single multi-echo gradient slice was acquired from the liver. Liver images were 
analysed by computing specific regions of interest for water, fat and T2* using a 
magnitude-based chemical shift technique with a six-peak lipid model, correcting 
for T1 and T2*.

Association analyses. We performed association analyses between 46 SNPs related 
to alcohol consumption and liver PDFF (%), from 8,479 samples, using a linear 
regression model adjusted for age, age2, sex, type 2 diabetes, body mass index, 
genotyping chip and the first three principal components. Liver PDDF was initially 
transformed using a rank-based inverse transformation. Significance levels were set 
at P < 0.05, adjusted using the FDR method for multiple comparisons.

Drosophila experiments. Flies were kept on standard cornmeal/molasses fly 
food in a 12 h:12 h light:dark cycle at 25 °C. The following transgenic flies were 
obtained from the Bloomington Drosophila Stock Center: UAS-hZIP8, BL 66125; 

UAS-dZIP71B-TRiP-RNAiHMC04064, BL 55376; dZip71BMI13940, BL 59234; and 
dZip71BMB11703, BL 29928. For behavioural experiments, crosses were set up such 
that experimental and control flies were sibling progeny from a cross, and both 
were therefore in the same hybrid genetic background (w Berlin/unknown). 
Flies aged 1–5 d of adult age were collected and after 2 d were exposed to 100/50 
(flowrates) ethanol/air vapour in the booz-o-mat, and their loss of righting was 
determined by slight tapping as described previously86. For tolerance, flies were put 
back onto regular food after an initial 30 min exposure and were then re-exposed to 
the same vapour 4 h later. Note that tolerance is not connected to initial sensitivity, 
and flies naively sensitive to ethanol-induced sedation can have a no-tolerance 
phenotype or a reduced-tolerance phenotype. Flies overexpressing hZIP8 (and 
their sibling controls) were placed at 28 °C for 2 d to increase the expression levels 
of the transgene, as we did not detect a phenotype when they were kept at 25 °C 
(data not shown). Data from experimental and control flies were compared using 
two-sided Student’s t-tests. Data were normally distributed according to Shapiro–
Wilk testing with Bonferroni adjustment for each of the three experiments.

Effects on other traits and diseases. We queried SNPs against GWAS results 
included in PhenoScanner (http://www.phenoscanner.medschl.cam.ac.uk) to 
investigate cross-trait effects, and we extracted all association results with genome-
wide significance at P < 5 × 10−8 for all of the SNPs in high LD (r2 ≥ 0.8) with the 
46 sentinel new SNPs to highlight the loci with strongest evidence of association 
with other traits. At the gene level, we performed over-representation enrichment 
analysis using WebGestalt41 on the nearest genes to all alcohol-consumption-
associated loci.

The genetic correlations between alcohol consumption and 235 other traits and 
diseases were obtained using the online software LD Hub. LD Hub is a centralized 
database of summary-level GWAS results and a web interface for LDSR analysis.

To estimate the potential causal effect of variants related to alcohol 
consumption on schizophrenia, we performed a Mendelian randomization 
analysis using publicly available GWAS data on schizophrenia and the Mendelian 
randomization package in R. The effect was estimated using the inverse-variance 
weighted method. Pleiotropy was tested by applying the MR-Egger regression 
method and heterogeneity statistics were obtained. The random-effects inverse-
variance method was applied in the presence of heterogeneity87.

GRSs and percentage of variance explained. We calculated an unbiased weighted 
GRS in 14,004 unrelated participants from the Airwave cohort—an independent 
cohort with high-quality HRC-imputed genetic data33. All previously reported 
and new variants were used for the construction of the GRS. We weighted the 
alcohol-consumption-increasing alleles by the β coefficients of the meta-analysis. 
We assessed the association of the GRS with alcohol intake and calculated the 
alcohol consumption levels for individuals in the top versus the bottom quintiles 
of the distribution. To calculate the percentage variance of alcohol consumption 
explained by genetic variants, we generated the residuals from a regression of 
alcohol consumption in the Airwave cohort. We then fit a second linear model 
for the trait residuals with all new and known variants plus the top ten principal 
components and estimated the percentage variance of the dependent variable 
explained by the variants.

Statistical analysis. All inferential statistics for the analyses described above are 
provided in the text or in tables and figures. All performed tests were two-sided.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The UKB GWAS data can be assessed from the UKB data repository (https://
biota.osc.ox.ac.uk/). The genetic and phenotypic UKB data are available through 
application to the UKB (https://www.ukbiobank.ac.uk). Summary GWAS data can 
be assessed by request to the corresponding authors and are available at LDHub 
(http://ldsc.broadinstitute.org/ldhub/).
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Reporting Summary
Nature Research wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency 
in reporting. For further information on Nature Research policies, see Authors & Referees and the Editorial Policy Checklist.

Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection Open source software was used for this project including BOLT LLM v2.3.2, R v3.5.3, PLINK v1.9, Mango v4.1, GCTA v1.92. We also used 
IPA for pathway analysis.

Data analysis For the UKB GWAS analysis, BOLT-LMM software v2.3 was used for running an association analysis using linear mixed modelling; then 
METAL software was used for all meta-analyses with a fixed effects inverse variance weighted meta-analysis approach. 
We used R software for any general statistical analyses, for secondary analyses (e.g. variance explained analyses, risk score analyses) and 
for producing plots in the figures. We used PLINK software for LD calculations of variants. 
For the bioinformatics analyses, specific software was used for each different analysis. Each method and the software used is described 
in the Online Methods,  For example, IPA was used for the over-representation enrichment analysis etc.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors/reviewers. 
We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A list of figures that have associated raw data 
- A description of any restrictions on data availability

The UKB GWAS data can be assessed from the UK Biobank data repository (http://biota.osc.ox.ac.uk/). The genetic and phenotypic UKB data are available upon 
application to the UK Biobank (https://www.ukbiobank.ac.uk). Summary GWAS data data can be assessed by request to the corresponding authors and will be 
available via LDHub (http://ldsc.broadinstitute.org/ldhub/).
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Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size From the ~500,000 UKB participant available, we analyzed 404,731 subjects which passed quality control (QC) of the genetic data, were of 
European ancestry, and met our phenotypic data QC requirements for availability. 
To maximize sample size in the discovery, we recruited an additional 76,111 samples of European descent from 25 cohorts participating in the 
AlcGen and the CHARGE+ consortia  reaching a total discovery sample size of N=480,842.

Data exclusions Within UK Biobank, we excluded samples according to both genetic data quality control (QC) and phenotypic data QC. From genetic data QC, 
we excluded 968 subjects listed as QC outliers for heterozygosity or missingness within the centrally provided UK Biobank sample QC files, and 
378 individuals with sex discordance between the phenotypic and genetically inferred sex. We also restricted to subjects of European 
ancestry, according to both self-reported ethnicity status and ancestry clustering using PCA data. For phenotypic QC, we excluded any 
subjects defined as long-time non-drinkers. Participants with with daily alcohol consumption >500 grams were excluded as outliers. We also 
excluded participants with missing covariates.  
Similar sample QC was performed at study level within each of the AlcGen and CHARGE+ consortia.

Replication We adopted a one-stage design with a stringent p-value threshold. Novel loci identified from our 1-stage approach met our criteria for 
internal replication by showing significant support within each of the UKB and AlcGen plus CHARGE+ GWAS datasets separately.

Randomization N/A for GWAS

Blinding N/A for GWAS 
(Note data collection of UK Biobank was done centrally, not performed by us)

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology

Animals and other organisms

Human research participants

Clinical data

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Human research participants
Policy information about studies involving human research participants

Population characteristics Summary descriptives of UKB, AlcGen and CHARGE+ individuals are provided in Supplementary Tables 1, 2, showing descriptive 
summary statistics in UKB (ST1), descriptive summary statistics in AlcGen and CHARGE plus cohorts (ST2).

Recruitment Data collection of UK Biobank was done centrally, not performed by us

Ethics oversight Research protocol for UK Biobank data has been approved by UK Biobank (application 13375) . Summary data have been 
provided from the other studies. All studies had their own research protocols approved by the respective local ethics 
committees. Participants provided written informed consent  

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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